Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175842

RESUMO

Nowadays, it is fascinating to engineer waste biomass into functional valuable nanomaterials. We investigate the production of hetero-atom doped carbon quantum dots (N-S@MCDs) to address the adaptability constraint in green precursors concerning the contents of the green precursors i.e., Tagetes erecta (marigold extract). The successful formation of N-S@MCDs as described has been validated by distinct analytical characterizations. As synthesized N-S@MCDs successfully incorporated on corn-starch powder, providing a nano-carbogenic fingerprint powder composition (N-S@MCDs/corn-starch phosphors). N-S@MCDs imparts astounding color-tunability which enables highly fluorescent fingerprint pattern developed on different non-porous surfaces along with immediate visual enhancement under UV-light, revealing a bright sharp fingerprint, along with long-time preservation of developed fingerprints. The creation and comparison of latent fingerprints (LFPs) are two key research in the recognition and detection of LFPs, respectively. In this work, developed fingerprints are regulated with an artificial intelligence program. The optimum sample has a very high degree of similarity with the standard control, as shown by the program's good matching score (86.94%) for the optimal sample. Hence, our results far outperform the benchmark attained using the conventional method, making the N-S@MCDs/corn-starch phosphors and the digital processing program suitable for use in real-world scenarios.


Assuntos
Pontos Quânticos , Humanos , Suor , Inteligência Artificial , Antropologia Forense , Pós , Dermatoglifia , Algoritmos , Corantes , Aprendizado de Máquina , Recursos Naturais , Amido , Carbono
2.
Int J Biol Macromol ; 253(Pt 7): 127491, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37852396

RESUMO

In this work, a novel copper nano-magnetite doped carbon aerogel (CXMCA) was created utilizing a simple graft co-polymerization approach with xanthan gum (XG) as a template to tackle the agglomeration problem caused by magnetic nanoparticle magnetism. The results indicated that the XG based CXMCA exhibited outstanding magnetic properties (Ms = 36.52 emu/g) as well as strong catalytic activity for the degradation of cationic and anionic dyes. Among all organic dyes, methylene blue and crystal violet (MB, CV) as cationic dyes, as well as congo red and methyl orange (CR, and MO) as anionic dyes, CXMCA demonstrated an exceptional dye degradation rate (8.06 × 10-3 s-1-1.12 × 10-2 s-1) and was highly competent for cationic dyes with degradation (90 %-98 %) as compared to its unsupported magnetic nanoparticles. The formation of CXMCA catalyst is clearly confirmed by the FTIR, XRD, XPS, VSM, SEM & TEM analyses. We report a very effective xanthan gum-based copper nano-magnetite doped carbon aerogel dye scavenger with application in percentage dye degradation and kinetic investigations, as well as a remarkable reusability assay up to 7 repetition cycles. The findings suggested that using biological macromolecules like xanthan gum as a foundation to generate magnetic aerogels might be a good choice for evaluating environmental aspects.


Assuntos
Corantes , Cobre , Corantes/química , Carbono , Óxido Ferroso-Férrico
3.
Anal Chim Acta ; 1272: 341502, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355334

RESUMO

Carbon quantum dots (CQDs) have emerged as a potential fluorescent probe in bio/analytical chemistry in the present decade. The optical characteristics of CQDs may be tuned by their functional groups, which can also be used to selectively produce stable bonds with target molecules. Along with them, ionic liquids (ILs) are now demonstrating their important relevance in the field of pharmaceuticals for the creation of potent therapeutics. In the article, we have discussed the use of high fluorescent ILs-decorated-CQDs (CQDs-IM@OTf) as a straightforward and quick-acting fluorescence probe for sensitive and precise hemoglobin (Hb) determination with minimum detectability of 6.7 nM. The proposed mechanism behind this involves static mode of quenching which leads to the formation of a ground state complex [CQDs-IM@OTf-Hb complex] between the Hb protein and the drug. Despite the fact that Hb can quench the fluorescence of CQDs due to the inner filter effect (IFE) of the protein, which effects both the excitation and emission spectra of the CQDs, the addition of H2O2 improved the sensitivity of Hb detection. The present assay predicated on Hb interaction with H2O2, which produces reactive oxygen species such as hydroxyl (OH.) and superoxide (O2.-) radicals under heme degradation and/or iron release from Hb. The subsequent reaction of hydroxyl radicals with CQDs, which acts as a strong oxidising agent, causes a high fluorescence quenching. The designed fluorescence probe was used to measure Hb in the concentration range of 3-90 nM with a precise detection limit of 0.33 nM. The quantification of hemoglobin (Hb) in diluted human blood samples is done using this observation.


Assuntos
Líquidos Iônicos , Pontos Quânticos , Humanos , Corantes Fluorescentes/química , Carbono/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Hemoglobinas , Radical Hidroxila
4.
Int J Biol Macromol ; 220: 537-572, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987359

RESUMO

Nowadays, nano/micro-encapsulation as a pioneering technique may significantly improve the bioavailability and durability of Natural bioactives. For this purpose, chitosan as a bioactive cationic natural polysaccharide has been frequently used as a carrier because of its distinct chemical and biological properties, including polycationic nature, biocompatibility, and biodegradability. Moreover, polysaccharide-based nano/micro-formulations are a new and extensive trend in scientific research and development in the disciplines of biomedicine, bioorganic/ medicinal chemistry, pharmaceutics, agrochemistry, and the food industry. It promises a new paradigm in drug delivery systems and nanocarrier formulations. This review aims to summarize current developments in approaches for designing innovative chitosan micro/nano-matrix, with an emphasis on the encapsulation of natural bioactives. The special emphasis led to a detailed integrative scientific achievement of the functionalities and abilities for encapsulating natural bioactives and mechanisms regulated in vitro/in vivo release in various biological/physiological environments.


Assuntos
Quitosana , Disponibilidade Biológica , Quitosana/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...